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UNDERWATER EXPLOSION PHENOMENA: THE PARAMETERS
OF MIGRATING BUBBLES

by
Ha.nB G L] shu-.,'

ABSTRACT: The migration of underwater explosion bubbles caused uv
(- ‘oyancy) affects the enersy of the pulsation as well as per:~3d =r
radius in the second &.ad subsequent cycles, Experimental data on 1
explcsions in various depths are analyzed, and the bubble energy is
for tive cycles of the oscillation as a function of the strength of
The result is given in dimensionless form which permits the calcula
periods, maximum radii, and migration for a wide range of condition

An energy balance shows the surprising resultr that the bubble energ
second cycle increases with Jacreasing intensity of migration until
is reached 2t a condition of strong migiration. Beyond this point,
decreases again. This gain is found to be due to the decrease of t
radiated by the bubble pulse,
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NAVORD REFORT 4185 12
UNDERWATER. EXPLOSION PHENOMEN.: THE P4 AMNTERS OF MIGRATING BUBB

In thie report the attempt is made t« further the understanding o
hydrodynamic processes associated with migrating expiosion bubble
tresults are obtained from an evaluation of experimental obee;vati
the use of involved theoretical calculations, The irport: : ‘o
raleulations is e graph showing the bubble energzy ratios fo: 10

cycles of the osci’i-cion. Combined with simple equations this i
permits the calculation of the bubble parameters for almost all p
important conditions of common explosives detonated under water.

caming NOLTR 62-184% utilizes the results of this paper and presen
method for erxpedient calculations,

Preliminary results of this study have been reported in previous
Although this final version shows little differences, the previou
the bubble energy ratios must be considered to be superseded,

This report is part of a comprehensive study on the behavior of e
hubbles. The work has been cerried out under Task No. 301-664/43
and RUME-3-E.000/212-1/WFC08-1G-004 PA 002,
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Captain, USN
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NAVORD REPORT 4185 12 October 1962
UNDEEWATER EXPIOSION PHENOMENA: THE PARAMETERS OF MISRATING B! JBISs

‘1 *ais report the attempyv is made to futher the understand. ng of the various
. rodynemic processes associated with misrating explosion bubbles. Revealing
resulis are obtained from an evaluation of axperimental cobservations without
the use of involved theoretical calculations. The iwportant outcome of the
calculations iz a graph showing the bubble energy ratios for the first five
cycl 5 of the oscillation. Combired with 3 uple equetions this information
permits the calculation of the buoble parameters for almost all practically
important condi.lons of co.mon explesives detonated under weter. The forth-
com.ng NOLTR 62-184 utilizes the results of this puper and presents a simple
method for expedient calculations,.

reliminary results of this study have been reported in previous papers,
.“hough th s final version shows lititle differences, the previous data on
~he bubble ener-y ratios must be considered to be superseded.

This report is part of a compreheusive study on the behavior of explosion
bubbles. The work i is been carrted out under Task No. 301-664/43003/C1040
and RUME-3-E-000/212-1/WFCOU.-10~004 PA 002,

R. E. ODENING
Captain, USN
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I, INTRODUCTION

There is an extensive literature ¢u the p'lsation ¢ hu%ules produced by
underwater axpiosions, listed in references (&) and (1 ,+, Aimast all of this
vork refers to non-migrating bubhles, i.e. it is assw. ed that -he center of
the bubble remains stationary. This assumption is valid for small charges
exploded in great depth, e.ge 1 1b in 500 ft. The bubbles of larg-r explosions
move upward because of their buoyancy and thereby change the characteristics
of the pulsation narameters, Little is known today about the fundamental
vehavicr of such uvubbles in the secord and the following cycles,

A theoretical *reatment of this problem is difficult for twe reasons:
(a) Migrating bubbles change their shape, When contracting, the lower inter-
face of the originally spherical bubble moves faster inward than the upper
interface, At an intermediate moment, the cross section of the bubdble
resembles that of a kidney., lLater, the upper and lower interfaces collide
and the bubble becumes & torus. Upon re-expansion, the spherical shape is
roughly restored, but energy has been dissipated by the impact of the inter-
faces, (b) Near the bubble minimum, the gas-water interface becomes unstable.
It tends to dissolve into a water spray which is projected into the interior
of the bubble., This brings forth a cooling of the explosion gases and, thus,
again a dissipation of cnergy.

Both of these dissipative processes are difficult to account for theorete
ically., A further portion of the hubble energy is radiated by the bubble
pulse., These energies are not available for the subsequent cycleg of the
bubble pul 'tion. A knowledge of the remaining energy is of prime importance
in eny quantitative calculation of the later bubble phenomena,

A rether crude approach is used in this paper to find the bubble energy
in each cycle cf the oscillation. The analysis 1s based on the change of
the bubble period caused by the various degreeyof migration. Strong migration
carries the bubble into a shallower depth, As a consequence the period of the
next oscillation is increased whe.a compared with that of & non-migrating bubble,
To carry out the arnalysis, the magnitude of the bubble migration must be known.
This process has been experimentally studied by means of scoustic ranginz of

* The 1ist of references is founé at the end of this report.
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the bubble miuimm, Further evidence is obtained in this paper from the
observation ~f the time at which the bubble breaks the water surface, Once
8 bubble migrates into the proximity of the water surface, the emissicn of
the bubble pulse ceases, The evidence whether or not a bubble pulse is
obsexved before the breakthrough yields information on the 4 .¢h of the
preceding bubble maximum,
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II, EQUATION FOR THE BUBBLE FNERGY RATIO

The period of the bubble oscillation in the n-th =y ¢ is given by

1/3
(1) T = 0.37h % @) ) g ;AM..E) .
z, Dy

The symbols are explained in the 1ist at the end of this report. The first
portion of (1) i» given in referemcs \b), where rQ is denoted by e. The last
term in the parenthesis accounts for the effect of the water surface which
shortens the period This term will be discussed in paragraph III, The effect
of the bottom of the sea is not included in (1), because the tests waich we
will analyze were made in water sufficiently deep as to make this effect
negligidbly small,

Forming the ratio of the n-th to the first period, we have

( >1/3 / Zl \5/5 le- aAMn/D
e l- QfAMl/Dl

Tn

@ 3
In this equation, the dimensionless period ¢t has been cancelled vhich amounts
to the tacit assumption that it is the same for all cycles of the pulsation.
On the basis of the classic bubble theory, this is vslid 4f the adiabatic
exponent gamma of the explosion geses is betweer 1,2 and 1.3 or sos Then, t
i3 essenti~-'ly constant and independent of the amplitude of the pulsation, as
seen in Figure 2 of reference (b)s The gamma of most of the common explosives
is within this range. For .ther values of gamma, the above assumption is only
approximately valid.

The maximum bubble radius in the n-th cycle is, reference (b):

3) Ay = LT3 a8, ( g N3

A surface correction is not necessary fcr the maximum radius, reference (a)
Chapter 8. Assuming that a is the same for all cycles, we can eliminate
Ay, 10 (2) vy means of
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r 1/3 2z 1/3 D
() %"’%’f’(ﬁ) ) T

n

B

The assumption of an equal is nct as good an approx actioa as that
of equel t, Since the significance of thz maximum radii in the later pilses
is less critical than that of the periods, the accuracy is acceptable fo.
our analysis.

Re-arrangement of (2) yields }?e folJ _ng quadratic for the cube root
of the bubble energy = tio (rn/rl) 3,

(5)

L 1/3 13 5/6
@) [ 2D 21-(B 2 @) Qo f)mo.

In order to find expressions for the ratice of the hyirostr.tic head Zn/Zl
and the depth Dn/Dl’ the nigration of the bubble musi ve kmown, We refer
Dn to the canter of the n~th bubble maximm and we set for the rise between
two such points

Da-Dwy %, w2 M %o, rn>l/2
(& —F— =g =7 Q-a«7FI\/ .
n n Zn A 1l

This formula is -ommonly used for the migration between the point of explosion
and the £irst minimm. It represents an approximation of Taylor's fo-mula
derived in reference (c).

If the assumption is nmade that the bubble remains spherical, theoretical
calculations yield for the coefficient C* the value 132, (For the rise
between two successive maxima, C* in (6) would be about twice as large.)
Comparison of the theoretical value with that obtained fvom measured hubble
migrations shows the former about 40% too high. Figure 1 illustrates this
discrepancy and also illustrates the great sratter of the data.

I~
/e, 2 .
The magnitude W' /2" in (€) is rela.2d to the Froude Number F waich
for our purposes is best defined by
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A g g4/3 g \1/3
(7) F = -'I.zg- n m m ~ (-w—-> .
Thus
=3/2
(8) ;g o~ P 3/ *

For the use in conjunction with the quadratic (5), (6) can be brought
into the form

- 1/2 pd -
O S NG G L . WG Y oy
? . T, / z. / % « SL\7z ) >
1 1 n Dn 1 n
Then 1
A n-l p _Dp
(10) -ZB- - Z .J_.Z_liﬂ
1 P
and 1
i~
(w 2 oe1- y e
D Z D
1 4=l 1 1

The computation of the reduced migration in the n-~th cycle requires
only the imowledge of \%/Zl and D /Zl. This provides all relations
necessary for the evaluatioin of (5). The energy ratios rn/rl can be computed

if the fol: ring information is given:

(a) mumerical values for € and o

T D
(b) =2 as a function of -;-Au—l- and =% ,
T & 0y

The next paragraphs deal with these data,
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IIX. THE SURFACE CORRECTION TERM

The surface correction term in (l) is given in the literature in various
forms. Referemce {d) 1ists the same form as (1), but footnote 12, page 342,
of reference (a) shows the surface correction as

1/3
1 t?‘h [
(12) "0D1<rgw> ®(x)

(Reference (&) erronecusly shows a 5/6 power for Z,) For the case of a free
water surface and infinitely deep weter, F‘(x) is unity. With the introduce-
tion of (%) und 0,92 (vhich is appropriste for our condi%ions), one
obtains o = 0,215,

Egsentially the saune value is obtalned for the ccefficient occurring in
the surface correction term for the migration (6) for which we have used the
same sy»bol oo From equation (8.67) of reference (a), this magnitude is found
to be 0.2, (There are two misprints in reference (a) at this place: In
equation (8.67) the factor 0.2 is omitted, In the preceding equation, the
factor should read O.4 and not 0,2). Referenmce (d) quotes o = 1/5 for the '
surface correction of the migration.

These values as well as the form of the surface correction term are first -
order approximations. Figure 2 shows the period constante versus depth of
expiosion corrected with the uae of various coefficients o These data are
from a test series which contributed the most importans values to our evalua-
tion, It is seen that o = O.1 makes the period constant independent of depth,
i.e. eliminates the surface effect, vhereas o = 0,2 "overcorrects", Actually,
o 18 not a constant, but deperds on AM/D as well as A /Z, Figure 8.21 of
reference (a) shows fair agreement for 300 1b TNT charges and Figure 8.20 good
agreement fo' 0,66 1b tetryl charges, if the pericds are corrected with o = 0.2,
But, a closer inspection again reveals an overcorrection, if shallow firing
coriitions are excluded, It 8 s that o = 0,1 is appropriate for such cases
where the bubble is not too close to the surface, as in Figure 2, vhere
< 0,5, For larger values of A,/D, i.e, for shallower explosions, a value of
o larger than 0.1 is n:eded .or complete correction. This shows that the
simple form of the surface correction term in (1) is not sufficient for 2
precise description of this efiect, For the purpose «f .nis paper the compli-
cations of & more elaborate relationship would not be worthwhile., In the
majority of cases waich are of interest here, the bubble 1s so far awey from
the water surface, that the value o = ,1 is eppli~able, For the instances
discussed in paragrachl, vhere the bul le treak-through is considered, it
was found that o had little effect on the location of the bubble zaxima aund
on the times of the break-through. Thus, it seems safe to use o = 0.1 for the
purposes of this paper.

6
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IV, THE MIGRATION COEFFICIENT

In Figure 1 experimental data on the bubble migration up to the first

bubble minimum are compiled. The reduced migration AZ[7 e “lstted versus

100 wi ‘/ 2o The data stem from various experimental seri- . wiinh a variety

of charge weights and explosives. Most of the experimer il poin%is were taken
rom a compiletion in reference (f). Only typical poin. 3 are shcwm in Figure 1
in order to avoid an overloading of the graph., All values are reduced to en
explosive heving the properties of TNT with the use of the appropriate equiva-
lent factors. Furthermore, all data are corrected to free field conditions,
i.e. an infinite medium, The correction was made as described in Paragraph IIl
of this raper using the factor o = 0s3. The results of the 290 1o TNT tests
are not very certain, because they were carried ocuv in water or .imited depth.
The method used to coi—ect for the effect of the bottom consisted of including

2
the term - o A Z/H into the parentheses of (6), where H is the distance be-
tween bottom and point of explosion. This correction is probably not very
accurate, but the cnly one known itoday.

The migration was measured by the sound ranging mevnod. The point from
which the bubble pulse is emitted was located by means of triangulation from
a vertical string carrying several pressure gages, One of the difficulties
of this method arises from the fact that thra pulse is not emitted from a mathe-
matical point, but from the bubble surface which at the moment of the minimum
atill has a considerable size. The great scatter of data shown in this figure
1llustrates the difficulties of this measurement and, therefore, the rather
approximate nature of the informatiocn.

Figure 1 also shows the result of numerical calculations using Taylor's
migration fc¢ mula, reference (c). The points shown have been obtained by rather
laborious caomputations made during World War II by various British agencies
quoted in reference éﬁ). Re. srence (d) stated that on this basis the rise is
proportional to Wll/ /le} 6. Kennard, reference (2),has noticed that the line
drawn through these theoretical points can be equaliy well represented by a
simple relationship which in our notation corresponds to

/2
(13) 827 = 3 -“-l:_ :
{h Z‘-
The experimentally observed migraticn .&n then be represented by
1/2
JAVA W
(W) 7= = & =5,
Z
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vhere C* is between 80 and 90 depending on the weight one desires to gire the
migretion at shallow or greater depths of explosion respectively. Actually
Figure 1 suggests a slightly different functional dependency of W and 2 from
that of the above equation. It is dubious whether or not the - perimental
evidence is sufficientl, accurate to establish such a functi-=.d rclationship.
In view of the scatter and the difficulties of measuring mi' ration, the form
(14) appears to be adequate. Also, it seems that either of the above quoted
values of the C* fits the data equally well and can be used with equal con-
fidence.

For the prurpose ¢ the present anpaiysis the migration between successive
bubble mexims is needed and not that betwee. the point of explosion and the
bubble minimum which is shown in Figure 1. The theory of reference (g)
(vhich deals with spherica. bubbles) gives the following picture about these
migration terms:

Migration between
(a) point of explosion and first maximum

2
g?T
(15)  p,-D = ==k [m2-22],

(b) point of explosion and first minimm
gT
1
(16) D, = D ;- In ke,
(c) first minimm and second ma.xiannm
(x7) D% - D, =£§.[1n2 1/2+ ke, |
l 2 3 - s

(@) first maxionm and second maximm

- = 8 2 2
(1) -1, = £ [Tl lmhe +T mbe,

+ ('1.'22 -1 w2 - 1/2)]

The magnitude ¢ depends on the ratio of maximum to minimm bubble radius:

(19) ¢ = ({/a) -1
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As before, the subscripts 1 and 2 refer to the first and second cycle of the
bubble pulsation respectively.

On the basis of this theory, the migration between the two maxima is just
twice the migration between the point of explosion and tire .irst minimum, if
the period and the coefficient ¢ are equal in both cycle=. .lthough this
result gives a valuable hint, the approximations made 1 . (10), (1), and (6)
are apparent: (a) Migration betwe:n the point of explo.ion and the first
bubble maximum is neglected in (10) and (11) for simplicity. Relation (15)
vhich is probably rather accurate, since all bubbles remain spherical during
the first expansion, indicates that this migration term can indeed be neglected,
It is sme!l in cor~arison with the other tovms if the firing conditions are
such tha. severai cycles of bubble puir aticn occur. It is a poor approxima-
tion for large charges expioded so shallow that the breaktarocugh at the water
surface occurs after .ne first minimum. But, such conditions are uot the
subject of our study. (b) Since neither T nor ¢ are consistently equal for
successive cycles, the factor 2 is not necessarily applicable in (6). But,nei-
ther is any constant fector, since the migration between two maxims depends on
the parameters of both cycles, It is the simplicity of the enalysis as well
as the present lack of any better information which justifies approximation
(6). In view of these discussions, it appears to be desirable to obtain an
independent check for the migration formule (6) and the factor e

Such an additional evidence of the bubble migration can be obtained
using the analysis developed in this paper and considering the time at which
the migrating bubble breaks through the water surface. This event can be

conveniently recorded by means of photography of the surface phencmena, A
pertinent result is listed in Table I,

TABLE I

Cnarge Weight: 1590 1b TNT Equivalent

Firing Dapth 130 ko 150 ft
Time of Bubble Break-

through Observed 2,50 3.2h 3.25 sec
Kineratographically

Time of latest 2.55 3.32 2,96 sec
Bubble Pulse

Observed 3rd pulse kth pulse L4th pulse

Time counts from icoment of detonstion,

9
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The slight discrepancies between the observed bubble pulses and the
times of tre bubble breakthrough are probably experimental errors., One
should expect the time of breakthrough to be somevhat larger than the time
of the pulse. For our purvose the magnitude of the time intervals observed
is not important, but only the correlation of these events.

Figures 3a to 3c show the position and size of the bubbl maxima calou-
lated with the coefficients C = 3,7, 2.5, and 3.2 for the co.iitions of
Table I, FExplosion bubbles are spherical up to the first maximm only., The
circles referring to the subsequent cycles in Figures 3a to ¢ must be under
stood as idealized measures of size, Such bubble shapes are not well defined
and can be considered spherical in a crude way only. The numbers shown near

the bubble refer tc ‘e cycle of the pusatione.

At 130 £t firing depth, the center of the fourth bubble maximm occurs
according to these calcuiations either above or so close to the water surlace
that a fourth bubble pulse could not have.been emitted. This is in agreement
with the experimental evidence which shows that the breskthrough must have
occurred imgediately after the 3rd bubble minimum. It must be visualized
that the bubble center jumps at this moment rayiGly from the position "3" to
the position "4", Figure 3a shows that for C :: 3.7 and 3.5 a considerable
part of the fourth bubble maximm is above the water surface, This would
result in the observed surface disturbances, On the other hand the bubble
is too deep at the third cycle for C = 7,2 in order to produce such surface
effects. This shows that C must be larger than 3.2

At 140 £t firing depth, a fourth bubble pulse was observed, For C = 3,7
the bubble is too shallow in the fourth cycle in order to produce 2 pulse.
It is generally assumed that mce the depth of the bubble center is l=ss than
90% of the meximm radius no bubble pulse is emitted. {This depth is called
the venting depth. We prefer the term "blow-in".) Although this evidence
is establishe” for tne first bubble maximum only, it is, at least approxi-
mately, applicable to the later cycles also. It turns out that in this case
C = 3.5 is the largest value fo which a fourth bubble pulse can be expected,
We have here a rather sensitive criterion for the migration coefficient C,

Figure 3c shows the case of 150 ft firing depth. The calculations using

any of the three values for C are compatible with the experimentai evidence,
Onemay argue that C = 3,2 again appears low in view of the evidence that the
breskthirough essentially coincided with the fourth bubble minimum,

It is obvious that the data available are not sufficient for an umsmbiguous
determination of the migration paramete: . However, it is significant that the
value C = 3.5 vhich is the largest value concistent wath the evidence of 13¢C £t

10
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firing depth and which holds for the third cycle is compatible with the
acoustically measured migrations shown in Pigure 1 vhich hold for the first
cycles C¥ and C are interrelated by

(13) o = 3P,

On this basis C* = 80 corresponds to C = 1,785. Th.s refers to migrations
up to the minimum. The value needed here would be about twice as large, hence
357

For the practical calculations it was decided to use the rounded value
C < 3050

It is realized tha. this value cannot claim a high degree of accuracy. It is
consistent with the experimental evidence available today, but because of the
great scatter of the data a considersble uncertainty remains,

In the following analysis, the value of C is somewhat less critical than
it might be expected, The bubble energies in the various cycies of the
pulsation are, of 2ourse, dependent on C, But, vhen these bubble energies are
later used to calculate bubble parameters, some of the uncertainties comnected
with C will be eliminated., For instance, the periods calculated by this method
will almost exactly reflect the input periods. The migration of the bubble
and the position of the bubble center of the various bubble maxima ae< more
sensitive to the migration parameter., But, these represent the best informa-
tion available todaye.

A sensitive method to check the validity of our method is the observa-
tion of the migrating bubble in a high gravity tank. A preliminary study
resulte? in excellent agreement, A comprehensive test series aimed at a
thorough check of the migration parsmeter is pianned,
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V., EXPERIMENTAL INPUT

In addition to the surface correction factor o and the bubble migration
coefficient C, information is needed on the period ratios Tn 1+ The form of
equation (5) does not require the knowledge of the periods by b welves. Also,
the cpecific firing conditions aie not needed for the evaluati~ or chis equa-
tion. It is sufficient to lmow the ratio Al(l/nl as well as 1 .e ratio 'I.l/Dl.
The nature of this iuput makes it possible to utilize test re wlts from explo-
sive charges having different explosive material, different cherge weights, and
different firing conditions. The bulk of the informetion stems from a test
series listed in reference (h). (Denoted as M-series in Figures 4 and 5.)
Other data (C-series) are from the files of the E Department of the Naval Ord-
nance Laboratory.

Figures 4 and 5 show the period ratios Tp/T; and T /Tl plotted versus
/Zl. The correspondiag values of Zl/D are given in"Figure & as curves,
The limiting values for grest depth (Ay,/Z —> 0) are T,/T; = 0,70 and T3/Tl =
04565,

Information on the fourth bubble period is sparse and uncertain., The
curve in rFigire 6 is based on the following three values:

TABLE II
2 D /2 T
A /% /) W
~0 1.0 0,51
0.15 0.81 1.17
0,166 0.82 1,34

The period ratios of non-migrating bubbles (A /Z  ~ 0) show a slight
variatior for different explosives, reterence (j)e Thé vilues chosen refer to
explosives which most closely resemble those employed in the M- and C- -eries:
minol for the second and torpex for the third cycle. The ratio for the fourth
cycle is estimated from the TN result, reference (1), on the basis of the
trend exhibited by the different explosives in the preceding zycles,

A crm ‘e estimate of rs/rh can be based on the veriod ratio of non~-migrating

TNT-bubbles, T /Th = 0,027, reference (1'. In absence of any tstter Informetion
the constant vAlue rs/ru = 0.80 might be used as a rough approximetion.

12
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VI, THE ENERGY OF MIGRATING BUBBLES

The result of the calculations outlined above is show~ in Figure 6, where
the energy fractions r /r . are plotted versus the reduc i migration. The
energy r. QW refers to the bubble energy at the instan’ .f we 1=-th bubble
meximm, It 18 well kmown that the major portion of t .s energy is poteatial
energy stored in the water during the bubble expansion. The rewainder is the
internal energy of the gas. Kinetic energy and the energy of migration are
negligibly small at this moment.

At cach bubl “ 2> minimum a reduction of the bubble energy takes place.
The ener~~ which is loect at this poin. essentially comprises two terms:
(a) ener.y acoustically radiated by the bubble pulse and (b) dissipated
energy. Both of theue energy terms depend on the degree of bubble migratione
Strong migration reduces the amplitude of the bubble pulse, thus reduces the
energy loss due to the acoustic radiation.

For non-migreting bubbles the energy dissipation =t thc budbble minimm
18 probably a consequence of the Taylor instability of the bubble interface,
With increasing migration and with the consequent decreuse of the excess
pressure in the bubble near its mirimm, the instability decreases. Thus,
the intensity of the spray prujeclted into the bubble interior is also de-
creased and so is the energy dissipation. However, migration causes the
inversion of the bubble and an impinging of the upper and lower bubble inter-
faces, The water hammer and the spray formaticn connected with it are
probably the alternative mechanisns of energy dissipetion. These take over
with increasing intensity as the effects of the Tayior instability decreasze,

These considerations illustrate the important role of migration in the
partition of these energy t--ms, In fact, our analysis clearly shows that,
the bubble energy fraction depends on the strength of the migration. It also
suggests the term which is used in Figure 6 as abu.issa.

Figure 6 shows the energy balance for the second cycle st the left hand
side. The bubble energy ratio ra/r 1s plotted as obtained from our analysis
and the input discussed in Para.grapﬁ V. This ratio refers to the energy of
the bubble at the second maximm. Since this energy is supplied from the
bukhlie energy of the first cycle, the term 1 - r2/r represents the energy
decrease which gccurs at the Tirst .abtle minimux. l'l'he energy of oi:e puise
vhich is emitted at the end of the first and the beginning of the second cycle
i3 shown as a dashed curve, (This cuxrve is a rather crude estimate made for
the sske of illustration.) The two curves divide the plot into three bands

the neightsof which represent {a) the bubble energy, (b) dissipated emergy, and

13
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(c) the pulse enevgy. In the dimensionless disgram shown, these three energies
add up to unity which is to say that the bubble energy of the first cycle splits
into thece **ree terms,

An interesting result is that the bubble erergy of the secand vele
initially increases with increasing migration, if the other paraz .erz of
the explosion are held constant, In view of the preceding cowr .38, ihls
is to be expected, It is also seen that the dissipated energy is roughly
constant over a considerable range of rigration intensity. Thus is surpr-ising,
since two different mecharisms of energy Aissipation are probably involved,
both of which depend on migration., Although one of them decreases and the
other increases with increasing migration, a roughly constant sum of these
factors, as suggested by Figure 6, was not necessarily to be expected.

For very strong migration, the bubble inversion and the consequent
energy dissipation appear to be so violent that a decrease of the bubble
energy in the second cycle results. For such conditions the energy radiated
by the bubble pulse is practically negligible,

The most important outcome of these calculations is that the energy ratios
given in Figure 6 permit the calculation of the parameters of migrating bubbles
for almost all explosion couditions of practical interest. (Nuclear explosions
are, of course, not included,) The calculations can be extended with reasonsble
confidence up to the end of the fourth cycle. Estimates for the fifth cycle are
possible with the use of the approximate energy ratio rs/rh = 0,8.

The conditions at the bubble minimum, its size and shape as well as its
energy of translation are not covered in this enalysis. However, it is
possible to calculate the position of the bubble minimum simply by assuming
it halfway between successive bubble maxima.

According to the present state of kmowledge the energy curves are appli.
cable to most exvlosives, Some deviations may be expected for deep explosions,
vhere only slight migration takes place., The evidence of non-migrating bubbles,
reference (Jj), shows & slight tren® in the period ratios for explosives of
different compositions, But, the results of the M- and C-geries give no indica.
tion of such a treud. If desired the effect of different explosives can be
accounted for in Figure 6 by comstructing a new curve vhich passes thrcugh the
appropriate value at AM/Z = 0 and subsequently merges into the old curve, But,
in most cases, such a precaution will not be necessary.

The practical epplication of the information obtained here, is discussed
in NOLTR 62-184, In this paper graphs are vresented which permit a comvenient
-~ reading of the bubble parareters for a wide rance of conditions.

n
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FIG. 3a POSITIONS AND RADIl OF THE BUBBLE MAXIMA CALCULATED FOR
THREE VALUES OF THE MIGRATION PARAMETER C. CHARGE WEIGHT
1580 LB ~TNT EQUIVALENT, FiRING DEPTH 130 FEET.
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FIG. 3b POSITIONS AND RADil OF THE BUBBLE MAXIMA CALCULATED FOR
THREE VALUES OF THE 4iCRATION PARAMETER C. CHARGE WEIGHT
1580 LB —-TNT EQUIVALENT, FIRING DEPTH 140 FEET,
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FIG. 3¢ POSITIONS AND R/ ;! OF THE BUBBLE MAXIMA CALCULATED FOR
THREE VALUES OF THE MIGRATION PARAMETER C. CHARGE WEICHT
1580 LB—TNT EQUIVALENT, FIRING DEPTH 150 FEET.
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LIST OF SYMBULS
Maximm Bubble Radius (f£t)
Minimum Bubble Radius (ft)
Reduced Maximum Bubble Radius (dim ..ioniess)
See equation (19)
Migration Coefficient (fte/lbl/ 2)
Migration Ccetsicien: (Aimensionless)
Depth of Bubble Center at Bubble Maximm (f£t)
Firing Deptn (ft)
Froude Number (Dimensionless)
Surface Correction Function (dimensionless)
Acceleration of Gravity (ft/seca)

Distance to Bottom (ft)

Radius Constant (ftl*/ 3 /1bl/ 3 )

5/6 / 1/3)

Period Constant (sec £t°/ /1b

Subscript Referring to Cycle of Pulsation

Chemical Energy per Unit Mass of Explosive (cal/ib)

Energy Fraction Referring to Bubble (dimensionless)

Bubble Energy (cal)

Period (sec)

Reduced Period \dimensionless)
Charge Weight (1b)

(D-Ho/(D*H) (aimensionless)

23
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Total Hydrostatic Head = D + 33 ft for sea water
Total Hydrostatic Head at firing depth (f£t)
Surface Correction factor (dimensionless)

»Q
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